
Heat transfer by conduction, natural 
convection and radiation across a 
rectangular cellular structure 

D. M. Kim and R. Viskanta* 

This paper describes results on the effects of wall conduction and radiation heat 
exchange among surfaces on laminar natural convection heat transfer in a two- 
dimensional rectangular cavity modelling a cellular structure. Parametric heat 
transfer calculations have been performed, and numerical results are presented in 
graphical and tabular form. Local and average Nusselt numbers along the cavity 
walls are reported for a range of parameters of physical interest. The findings 
suggest that the local orthe average Nusselt number is one of many parameters that 
control conjugate heat transfer problems. The results indicate that natural 
convection heat transfer in the cavity is reduced by heat conduction in the walls 
and radiation exchange among surfaces. The results obtained for the total heat 
transfer rate through the system using the two-dimensional model are compared 
with those based on a one-dimensional model. 
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There are numerous physical situations where heat is 
transported through solids which contain regularly or 
irregularly arranged cavities filled with air or other fluids. 
Examples of such situations include shells, sandwich 
structures, cellular materials such as bricks, insulations, 
cellular cavities, cement blocks, and foams ~. Heat transfer 
through the structure or material is affected by the shape, 
size and number density of cavities (voids) through the 
structure, thermophysical properties of the solid and the 
fluid, the temperature level and imposed thermal con- 
ditions. In such situations heat transfer through the solid 
is by conduction and by combined natural convection and 
radiation across the cavity. Depending on the thermal 
conditions imposed on the system, either natural con- 
vection or thermal radiation may predominate. Heat 
transfer by conduction in the solid is affected by natural 
convection and radiation across the cavity and vice versa. 
Problems of this type are referred to as conjugate heat 
transfer problems and have received relatively little 
theoretical and experimental research attention. 

Experimental and numerical computational stu- 
dies dealing with natural convection in enclosures have 
been reported in the literature. Excellent reviews are 
available 2-4 and there is no need to repeat them. Most of 
the literature on natural convection heat transfer in cells 
and cavities does not account for wall heat conduction 
and radiation exchange between the walls. For example, 
heat conduction in an externally insulated wall causes the 
temperature distribution in the insulated wall to deviate 
from that of the adiabatic case, and thus precludes the 
possibility of obtaining experimentally a truly adiabatic 
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boundary condition in some fluids such as air. In all 
enclosures thermal boundary conditions (wall conduc- 
tance) can lead to stabilization or destabilization of the 
flow and corresponding large changes in the heat transfer 
coefficient. Natural convection in the cavity can also 
induce conduction heat transfer in the surrounding 
walls 5. 

It has been recognized 4,5 that thermal boundary 
conditions (wall conduction and radiation exchange) on 
enclosure boundaries influence natural convection in the 
cavity but the problem has received relatively little 
theoretical and experimental attention 6 ~ o. Natural con- 
vection in a two-dimensional enclosure surrounded by 
one-dimensional conducting and radiating walls has been 
analyzed numerically 6. The effects of cell wall thickness 
and thermal conductivity on natural convection heat 
transfer within inclined rectangular cavities have been 
analysed to gain understanding of the efficiency of cellular 
structures to reduce convective heat losses in flat-plate 
solar collectors 7'8. Natural convection in a rectangular 
enclosure subjected to comparable horizontal and verti- 
cal temperature differences has been studied 9, and effects 
of finite wall heat conductance on natural convection in a 
two-dimensional rectangular cavity have been examined 
by solving numerically the model equations ~ o. 

Solutions for natural convection heat transfer in 
rectangular cavities with perfectly insulated 1~,~3 and 
perfectly conducting 13 19 horizontal connecting walls 
have been reported. Natural convection in a cavity with a 
conducting insert has been analyzed using a finite element 
method 2°. A simplified analytical model for the com- 
putation of heat conduction across a rectangular-celled 
enclosure filled with a fluid has been presented, but the 
interaction between conduction in the walls and con- 
vection in the fluid has been neglected 2~. Analysis of heat 
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transfer in a prismatic rectangular bar cooled or heated by 
a flowing fluid in the circular cutouts of the bar has been 
performed and numerical results have been reported 22. 

The purpose of this paper is to report on a 
computational study of heat transfer through cellular 
materials containing rectangular cavities. The results of 
the effects of wall conduction and radiation heat exchange 
on laminar natural convection heat transfer are in- 
vestigated and quantified. A mathematical model is 
formulated, and numerical procedures are used to solve 
the model equations. Results of extensive parametric 
studies are reported in both graphical and tabular form. 
The results obtained are compared with predictions based 
on a simple one-dimensional model for overall heat 
transfer through the system. 

Analysis 
Physical model and assumptions 

The physical model and coordinate system of the problem 
are shown in Fig 1. The two-dimensional, rectangular 
cavity or a module of a cellular structure containing 
numerous cavities is formed by walls having finite con- 
ductances. The vertical and the horizontal walls can be of 
different thickness but are assumed to be of the same 
material. Initially, the walls of the enclosure and the fluid 
inside the cavity are assumed to be at a constant, uniform 
temperature, and the fluid is taken to be stagnant. The 
horizontal connecting walls forming the enclosure are 
assumed to be insulated on the outside. At some time t > 0 
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Physical model of the system 
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constant but different temperatures are suddenly imposed 
on the outside of the two vertical walls and maintained 
until steady-state conditions are reached. 

It is assumed in the analysis that the thermophysi- 
cal properties of the walls and of the fluid are independent 
of temperature, except for the density in the buoyancy 

Notation 
AR Aspect ratio of cavity, ,~/l (Fig 1) 
F u Configuration (view, angle) factor 
H Height of solid wall (Fig 1) 
d Height of cavity (Fig 1) 
h Convective heat transfer coefficient 
~* Normalized cavity height, ,~/H 
J Radiosity 
J* Dimensionless radiosity, J/aT~ 
k Thermal conductivity 
k* Thermal conductivity ratio, kw/k 
L Width of solid wall (Fig 1) 
l Width of cavity (Fig 1) 
l* Normalized cavity width, UL 
N, Radiation number, e,trT~l/kw(TH- Tc) 
Nu Local Nusselt number, hl/k 
Nu Average Nusselt number, hl/k 
Pr Prandtl number, v/~ 
Q* Dimensionless, heat transfer rate, 

S ~ q(x)dx/H(T.  - Tc) 
q Heat flux 
q* Dimensionless radiation heat flux, qr/~waT~ 
Ra Rayleigh number, gfl(Tn- Tc)13/v O~ 
Ra* Modified Rayleigh number, #fl(TH-- Tc)14/v~L 
s Position variable measured along the surfaces 
T Temperature 
t Time 
U Dimensionless velocity in the Y-direction, u/U o 
U0 Reference velocity, ~/l 
u Fluid velocity in the X-direction 
V Dimensionless velocity in the Y-direction, v/Uo 

v Fluid velocity in the Y-direction 
x Coordinate (Fig 1) 
y Coordinate (Fig 1) 

Thermal diffusivity 
~* Thermal diffusivity ratio, ~ / ~  
fl Thermal expansion coefficient 

Temperature ratio, TH/T c 
e Emissivity 

Dimensionless normal coordinate (¢ or 0 
r/ Dimensionless Y-coordinate, y/l 
0 Dimensionless temperature, (T-  Tc)/(TH- Tc) 

Dimensionless X-coordinate, x/l 
cr Stefan-Boltzmann constant 

Dime,~.sionless time, o~t/l 2 
~b Void fraction, hl/HL 
q' Dimensionless stream function, ~l/U o 

Stream function 
Dimensionless vorticity, ogl/U o 

09 Vorticity 

Subscr ipts 

b Refers to bottom of cavity 
C Refers to the cold side of enclosure 
c Refers to cold side of cavity 
H Refers to the hot side of enclosure 
h Refers to hot side of cavity 
i Side of the wall 
r Radiation 
t Refers to top of cavity 
w Refers to solid wall 
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term. The fluid is Newtonian, incompressible, and the 
Boussinesq approximation is valid. Viscous heat dissi- 
pation in the fluid is assumed to be negligible in com- 
parison to conduction and convection. The fluid motion 
and heat transfer in the cavity are assumed to be two- 
dimensional and laminar. The fluid inside the cavity is 
considered to be radiatively non-participating, and only 
radiation heat exchange among the gray diffusely emitting 
and reflecting walls is considered. 

Model equations 

For the sake of brevity, the conservation equations are 
written in dimensionless form from the start. The tran- 
sient heat conduction equation in the wall is: 

aOw a,['l'~2FO20~ //L"~2020w -] 
& tL, ) L C~w ~,H) OV/w J (1) 

The conservation equations of mass, momentum and 
energy for the fluid can be expressed in standard form by 
introducing the concepts of stream function and vorticity. 
The dimensionless vorticity, stream function, energy and 
velocity equations become, respectively: 

Pa(UD) 4 1 O(V~)] 
~+L---~-- AR ~ J 

= P r t - ~ +  AR 2 - ~ 2 ) +Ra  Pr-~ (2) 

dO d(UO) 1 d(VO) t320 1 t320 
~ - ~ r + - ~  -t AR drl ~2 t AR 2 t3t/2 (3) 

AR' J / (4) 

where the velocities are defined in terms of the stream 
function as: 

1 8W ~W 
U = and V = - - -  (5) 

AR a~ ~¢ 

The initial temperature in the system is assumed to be 
uniform and the fluid is stagnant. The vertical outside 
walls of the enclosure are at constant but different 
temperatures and the horizontal connecting walls are 
insulated. At the interior walls (solid-fluid interface) of the 
enclosure there is no slip; the temperature is continuous, 
ie 0(~,t/, O. = 0,(¢,t/,0w. A local energy balance at the 
inside surface of a wall gives the condition: 

dO. 1 ~90 
~( k* 8( + N'q* (6) 

where the local radiative heat flux at any surface i can be 
expressed as: 

q*={lt 1\4[ 1 "~4 
-7) t°i+TmT) 
4 

-- ~.~ SAjJt(sj)K(si, sj)dAj i , j= 1,2 ..... 4 
j = l  

(7) 
For  the sake of brevity the integral equations for the 
radiosities J* are not given here, but they can be 
found elsewhere 6,2a. Even though the wall emissivity does 
not appear directly in the expressions for the local 

Heat transfer across a rectangular cellular structure 

radiative fluxes q* because of the nondimensionalization 
used, it is present as a parameter in the radiosity equations 
J*. 

The convective heat transfer coefficient h is based 
on (TH + Tc)/2 as the reference temperature since a mean- 
ingful fluid temperature cannot be defined. Using the 
dimensionless variables, the local Nusselt number can be 
expressed as: 

d0 
N.= - ~ .  (8) 

Method of solution 

Analytical solutions of the governing conservation equa- 
tions are not feasible, and approximate methods available 
are not sufficiently flexible. Therefore, a numerical me- 
thod has been adopted. The various schemes which are 
available 24'2s will not be discussed here. The alternating 
direction implicit (ADI) method z4 has been adopted for 
the numerical solution of the system of equations, Eqs (1)- 
(4), together with the boundary conditions. For  this 
purpose the stream function equation, Eq (4), was also 
rewritten in a transient form and solved using the ADI 
method until steady-state was reached 6. 

A uniform grid spacing was used in the solid wall. 
However, in order to resolve the boundary layers in the 
fluid it was desirable to use a non-uniform mesh for 
accuracy and computational efficiency. The temperature 
field in the solid and the velocity and temperature fields in 
the fluid are computed as a function of time. However, 
only the steady state results are reported in the paper as 
they are of primary interest. 

The effect of the total number of nodes and the 
number of nodes in the fluid have been examined, and the 
results reported here have been obtained using 26 x 26 
grid for the enclosure with 16 x 16 grid in the fluid. The 
numerical results agreed well with the benchmark 
solutions for limiting cases 11'12,~s. For  Ra=106 and 
Ra = 107 the average Nusselt numbers calculated differed 
from the benchmark solutions ~ by a maximum of 1.5% 
and 2.2% respectively. 

Validation of the model and of the numerical 
scheme was also achieved by successfully predicting the 
interferometrically measured temperature distributions 
for a square cavity filled with atmospheric pressure air z3. 
Numerical experiments performed with different grids 
showed that the number of nodes chosen was a reasonable 
compromise between computational effort and accuracy. 
For  example, there was less than 0.022% difference 
between the average Nusselt numbers calculated using 
13 x 13 and 21 x21 grids in the fluid for a Rayleigh 
number of 106 . 

One-dimensional  heat t ransfer  model 

If heat transfer is predominantly one-dimensional, the 
rate through the system can be estimated using the 
thermal resistance concepts 26. Assuming one- 
dimensional heat transfer and no interaction between 
conduction in the solid and natural convection-radiation 
with the adiabatic (reradiating) connecting horizontal 
walls, the total heat transfer rate can be expressed in 
dimensionless form as: 

Q* = Q/[k.LH(T. - Tc)/L ] = 
= (1 -/~*) + (1/l*)2¢/[k*/~,u + (1//) - i ]  (9) 
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where: 

bTu = (h + hr)~ = Nu + N u  r (10) 
k 

The convective heat transfer coefficient/~ for the cavity 
can be evaluated from the correlations available in the 
literature which neglect the interaction between con- 
duction in the wall and natural convection in the 
fluid 1 ~ - ~ 7. The effective radiative heat transfer coefficient 
/~r is found to be: 

'r-m-(~(T~JI-T~Tc-I-ThT2c"I-T~/[2(L~w-~-) JrF-F~D~-RI (]1) 
where/~h-R is a radiation exchange factor which accounts 
for the presence of adiabatic (reradiating) horizontal 
connecting walls 26. 

Note that the radiative resistance 1//Yr cannot be 
determined without the knowledge of the heat transfer 
rate across the cavity since the temperatures Th and T~ at 
the cavity surfaces are not known. However, Th and T~ can 
be calculated by linear approximation from the outside 
wall temperatures TH and T c (Th=ET.(L+/)+ 
Tc(L-l)]/2L and T~= Tc+(L- I ) (T . -  Tc)/2L). Hence, 
an iterative procedure must be used to calculate the 
radiative heat transfer coefficient hr and the heat transfer 
rate through the system. 

Results and discussion 

There are a large number of independent parameters 
(Ra*, Pr, AR, H/L, ~b, k*, ct*, e~,, N,, and 7) governing the 
problem and it is not feasible to obtain solutions for the 
complete range of interest. Solutions have been obtained 
for combined conduction, radiation and laminar natural 
convection in cavities with all four walls having finite 
conductances. The results for the flow and temperature 
fields, the local Nusselt numbers, the average Nusselt 
numbers, and total heat transfer through the system are 
calculated for different Prandtl number fluids over a 
modified Rayleigh number Ra* range from 104 to 107 and 
specific values of L/H, AR, dp, k*, a*, Nr, ew, and 7. The 
emphasis of the discussion in the paper is on heat transfer 
rather than on stability or flow. 

Heat transfer in the absence of radiation 

Isotherms and f low fields 

Extensive numerical results for flow and temperature 
fields have been obtained for different Ra*, 4, AR, and Pr 
in the cavity 23. Suffice it to mention that the results are 
similar to those obtained by others in the absence of wall 
conduction 11-2°. Presence of conduction can simul- 
taneously stabilize and destabilize the fluid in the cavity 
and affects both the temperature distribution and con- 
vective heat transfer at the walls. 

Local and average Nusselt numbers 

Because the system considered has four conducting walls, 
the local Nusselt numbers should be defined for all four 
walls. Fig 2 shows the effect of the Rayleigh number on the 
local heat transfer along the hot vertical and horizontal 
connecting walls, respectively. As a result of the de- 
finitions adopted, the local Nusselt number is positive if 
heat flows from the wall to the fluid, and negative if heat 

flows from the fluid to the wall. At the connecting 
horizontal walls the local Nusselt number does not vanish 
and may be either positive or negative, depending on the 
position along the walls. This indicates that for conjugate 
(combined conduction-convection-radiation exchange) 
problems the Nusselt number may not be the most 
desirable heat transfer parameter for correlating results 
and data. For the problem considered, the Nusselt 
number not only depends on the geometry of the cavity 
and the relevant conventional parameters (Ra and Pr) but 
also on the thermophysical properties of the wall ma- 
terials (ct* and k*), the porosity (~b), and the geometry of 
the cavity within the enclosures (L/H and AR). 

The maximum local Nusselt number at the hot 
vertical wall (Fig 2) occurs in the lower half of the cavity 
(r/~ 0.7). This is caused by the cold fluid, which descended 
from the cold wall, moved along the connecting wall, and 
impinged on the hot wall near its base. It is interesting to 
note the change of heat flow direction at the horizontal 
connecting walls. The location along the wall where the 
direction of heat flow is reversed depends on the modified 
Rayleigh number, Prandtl number and other parameters 
(~b, AR, L/H, and k*) 23. 

The effects of the porosity ~b and the aspect ratio 
AR on the local Nusselt number at the heated wall are 
shown in Figs 3 and 4 respectively. The Nusselt number 
depends strongly on both the void fraction and on the 
aspect ratio. The local Nusselt numbers with ~b = 0.5 are 
almost twice as large as the ones for ~b =0.25 for the same 
Rayleigh numbers (Fig 3). This is due to the larger 
temperature difference across the cavity between the hot 
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Fig 2 Local Nusselt numbers along the four cavity walls 
(Ra*=106, Pr=0.71, AR=I.0 ,  H /L=I .0 ,  tk=0.5, 
k* = 10.0, o:* = 0.005, and Nr = O) 
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Fig 3 Effect of void fraction on the local Nusselt number 
(Pr=0.71, AR=I.O, L/H=I.O,  4)=0.5, k*=lO.O, and 
o~* = 0.005) 

and cold inside walls which increase with the void 
fraction, resulting in more intense natural convection 
circulation in the cavity. Fig4 shows that the effect of 
Rayleigh number on the local Nusselt number is much 
more significant for AR=0.5  than for AR=2.0.  The 
location of the maximum value o fNu h occurs in the lower 
half of the cavity (~/,,~ 0.7) and is affected little by Ra*. 

The results for the average Nusselt number have 
been calculated for a range of modified Rayleigh numbers 
and are given in Table 1. As the modified Rayleigh 
number increases, the average Nusselt number on the four 
walls of the cavity also increases. Although the average 
Nusselt numbers at the top and the bottom walls are quite 
small, the local Nusselt numbers can be quite large (Fig 2). 
In other words, the total heat transfer across the top and 
bottom walls of the cavity is small since the average 
Nusselt number is very small at the top and the bottom of 
the cavity, but the local heat transfer through the top and 
the bottom walls is large. 

An empirical correlation of the average Nusselt 
number for a rectangular cavity surrounded by conduct- 
ing wall has been obtained from a least squares fit of the 
numerical results: 

Nu = 0.410q~ °'93(k*) °'13 a(Ra,)O.2 
0 . 3 < P r < 5 0  (12) 

Nu = 0.485q~ °'9 a(k*) °'1 a 8(Ra,)O.2 
5 0 < P r <  100 (13) 

These equations are based on the following range of 
parameters: 105 < Ra* < 107, 0.25 < t~ <0.6, 3 < k* < 100, 
and AR = 1.0. A comparison of average Nusselt numbers 
between the correlations, Eqs (12) and (13), for finite 
conductance walls and the correlations for the limiting 
case of isothermal cavity with perfectly conducting and 
perfectly insulated horizontal walls is of interest. A 

Heat t ransfer  across a rec tangu la r  ce l lu la r  s t ruc ture  

correlation for the average Nusselt number at the heated 
wall for the case of perfectly insulated horizontal connect- 
ing walls has been obtained from the least squares fit of the 
numerical data of the form: 

Nu=O.126Ra °'al 5 x 10a<Ra<107  (14) 

The correlation gives a maximum error of 3% in com- 
parison with the benchmark solutions ~ ~ for 
104< Ra < 10 6, and 2% error in comparison with other 
published results 12 for Ra= 107. A correlation of the 
average Nusselt number at the heated vertical wall for 
perfectly conducting horizontal connecting walls has also 
been obtained from a least squares fit of the numerical 
results in the form: 

Nu=O.129Ra ° ' 2 8 3  1 0 4 < R a < 5  x l06 (15) 

The correlation gives a maximum error of 2% in com- 
parison to the reported solution 17 for l04 < Ra < l0 s and 
also to the other results 13 for Ra= 10 6. 
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Fig 4 Effect of the aspect ratio AR on local Nusselt 
number at the hot wall (Pr=0.71, AR=0.5,  L/H=I.O, 
4) =0.36, k * =  10.0, and ~* =0.005) 

Table 1 Average Nusselt number along the 
four walls of a square cavity; Pr=0.71, 
AR =1.0, H/L =1.0, q~ =0.36, k*--10.0, and ~* =0.005 

Average Nusselt number 

Ra* N u  h N u  c N u  t N u  b 

104 1.31 0 1.311 0.219 0.220 
10 s 2.195 2.184 0.651 0.647 
10 e 3.801 3.781 1.01 7 1.057 
107 5.51 7 5.701 - 1.1 39 1.555 
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L L One- di'mensional model, Eq (9) 
1 . 6 ~ \  - Two- dimensionol model - 
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Fig 5 Comparison between the one- and two-dimensional 
models for the total heat transfer across the system 
(Ra*=lO 6, Pr=0.71, AR=I.0, L/H=I.O, 0=0.36, 
or* =0.005, and Nr=O) 

Total heat transfer 

The temperature gradient in the solid becomes smaller 
with an increase in the thermal conductivity ratio, and as a 
result, the dimensionless total heat transfer rate decreases 
as k* increases (Fig 5). This indicates that the thermal 
conductivity ratio becomes a more dominant parameter 
than natural convection (Nusselt number) in controlling 
the total heat transfer rate through the system. The rate 
depends not only on the Nusselt number, but is also 
strongly dependent on the thermal conductivities of the 
solid and the fluid. The comparison between the results 
obtained with the one-dimensional, using either Eq (14) or 
Eq (15) for Nu, and the two-dimensional models for the 
total heat transfer rate with the thermal conductivity ratio 
k* as a parameter indicates that the effect of natural 
convection on the total heat transfer becomes significant 
as the thermal conductivity ratio decreases. The one- 
dimensional model -- Eq (9) with Eq (14) for Nu -- 
overpredicts the total heat transfer rate by 6% at k* = 10. 
However, the one-dimensional model -- Eq (4) with Eq 
(15) for Nu -- underpredicts the total heat transfer by 14% 
at k*= 100. This indicates that when heat conduction 
predominates over natural convection, the one- 
dimensional model accurately predicts the total heat 
transfer for large thermal conductivity ratios. 

Fig 6 shows a comparison of total heat transfer 
predictions based on the one-dimensional (with Eq (15) 
for Nu) and on the two-dimensional models for different 
void fractions. As the Rayleigh number increases, the 
effect of natural convection on the total heat transfer rate 
becomes more significant for higher void fractions. The 

one-dimensional model underpredicts the total heat 
transfer at lower modified Rayleigh number and overpre- 
dicts at higher Rayleigh number (Ra* > 105). 

The total heat transfer rates have been calculated 
for different aspect ratios and are presented and compared 
in Fig 7 with the results based on the one-dimensional 
model described earlier. The average Nusselt number 
correlations used for the three different aspect ratio 
cavities are indicated in the figure. The dimensionless total 
heat transfer rate is increased with a decrease in the aspect 
ratio. This clearly indicates that the aspect ratio is an 
important parameter which influences the heat transfer 
through the system. The effect of heat conduction on the 
total heat transfer is significant at the low modified 
Rayleigh numbers, but natural convection becomes the 
important heat transfer mode at higher Rayleigh numbers 
for aspect ratio of 0.5. This means that the one- 
dimensional model can accurately predict the total heat 
transfer rate at low Rayleigh number. However, for higher 
Rayleigh number with AR = 0.5 or greater, the model does 
not accurately predict the total heat transfer rate. 

Heat transfer w i th  radiation interchange among 
cavity wal ls 

Flow and temperature fields 

When radiation exchange among cavity walls is accoun- 
ted for, three additional parameters, radiation number N,, 
wall emissivity ew, and temperature ratio ~, arise and must 
be considered together with wall heat conduction para- 
meters. Increase in the radiation parameter Nr and an 
increase in the surface emissivity of the cavity wall ew 
increase the temperature drop through the vertical walls 
of the system and the temperature gradients in the fluid 

1.0 

i I 

One-dimensional model, Eq (9) 

Two dimensional model 

0.6 

= 0.25 

-- 0.56 

0.50 

0.4 I I I 
io ~ io ~ io ~ lo ~ 

Log Ra* 
Fig 6 Effect of void fraction of the total heat transfer 
across the system (Pr=0.71, AR=I.0, L/H=I.0,  
k*= 10.0, c(* =0.005 and Nr=0) 
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Fig 7 Effect of aspect ratio on the total heat transfer 
across the system (Pr =0.71, qb =0.36, L/H = 1.0, k* = 10.0, 
ot*=O.O05 and N , = 0 )  
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Fig 8 Effects of the radiation number Nr and wall 
emissivity ew on the temperature distribution in the vertical 
wall (Ra* = 106, Pr=0.71, AR= 1.0, H / L =  1.0, q~ =0.36, 
k* = 10.0, ~t* = 0.005, ~ = 1.2, and ew = 1.0) 

near the walls. This results in significantly lower tempera- 
ture across the cavity (Fig 8) than when radiation was 
absent. The reduced temperature difference between the 
hot and cold inside surfaces of the cavity results in a 
decrease ofthe buoyancy force. The stream function at the 
midpoint decreases from Wo = 16.35 (Nr = 1 and ew = 1.0) 
to Wo = 14.32 (Nr=10 and e , =  1.0). This means that 

Heat t ransfer  across a rec tangu la r  ce l lu la r  s t ruc ture  

natural convection circulation becomes less intense with 
an increase in radiation heat transfer. However, the 
stream function at the midpoint of the cavity changes little 
- -  from ~F0=16.41 ( e ,=0  and N r = l )  to W0=16.34 
(e, = 1.0 and Nr = 1) - -  as the wall emissivity is increased. 
The effects of radiation on the vertical velocities are not 
significant as the radiation number is changed from 
Nr=0.1 to 1, but are more pronounced as the radiation 
number is changed from Nr = 1 to 10. 

Local and total heat transfer 

The dimensionless local heat fluxes at the hot and the cold 
inside walls show that radiation heat transfer predo- 
minates over natural convection for Nr = 10, and for a 
given radiation number Nr the flux increases as the wall 
emissivity is increased. The flux is relatively uniform along 
the vertical walls, except near the top and the bottom of 
the walls 2a. 

Fig 9 shows the local Nusselt number variation 
along the hot vertical wall for different radiation para- 
meters Nr and wall emissivities e,. The local convective 
heat transfer decreases significantly as the radiation 
parameter Nr is increased and indicates that radiation 
heat exchange predominates over natural convection. The 
local Nusselt number decreases with an increase in the 
wall emissivity e, as a result of decreasing temperature 
gradient in the fluid. 

The percentage of the total heat transfer at ~, = 0.2 
(ie vertical plane corresponding to the hot inside vertical 
surface) is given as a function of wall emissivity ew in Table 
2. The percentages of heat transfer by conduction and 
natural convection are 51.4% and 48.6%, respectively, for 
the perfectly reflecting wall (ew=0). However, these per- 
centages decrease to 44.0% and 35.5%, respectively, for a 
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Fig 9 Effects of the wall emissivity ew on the local Nusselt 
number (R*a=106, Pr=0.71,  AR=I .0 ,  H / L = I . 0 ,  
k * =  10.0, ct* =O.O05, ~= 1.2, and N , = 0 )  
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Table 2 Effect of wall emissivity ~ on the 
fraction of the total heat transfer at the 
plane; ~w=O.2, Ra* =10 e, Nr=1.0, and y=1.2 

ew 0 0.25 0.5 0.75 1.0 

Qco,d, % 51.4 48.9 47.2 45.5 44.0 
Qconv, % 48.6 45.4 41.5 38.1 35.5 
Qrad, % 0 5.7 11.3 16.4 20.5 

Table 3 Effect of radiation heat transfer on 
average Nusselt number and total 
dimensionless heat transfer; Pr=O.71, AR=1.0, 
H/L=1.0, ~=0.36 ,  ~*=0.005,  k * = l O . 0 ,  ~ ,=1.0 ,  
y=1.2, and Nr=1.0 

Ra* 10 4 10 5 10 e 10 7 

Nuh 1.112 1.382 3.210 4.902 
(1.31 0) (2.1 95) (3.801) (5.51 7) 

Q* 0.708 0.807 0.941 1.042 
(0.548) (0.638) (0.771) (0.928) 

Table 5 Effect of radiation number Nr on 
average Nusselt number and total 
dimensionless heat transfer; Ra=lO e, Pr=0.71, 
AR=1.0, H/L--1.0, ~=0.36, k=lO.0, ~=0.005, 
?=1.2, and e.w=1.0 

N, 0.01 0.1 1.0 10.0 50.0 

Nuh 3.801 3.773 3.210 1.379 0.392 

Q* 0.773 0.795 0.941 1.577 1.965 
(0.815) (0.835) (0.971) (1.451) (1.785) 

Table 6 Effect of the imposed temperature 
ratio y on average Nusselt number and total 
dimensionless heat transfer; Ra* =10 e, Pr=0.71, 
AR=1.0, H/L=1.0, ~=0.36, k*=lO.O, ~*=0.005, 
Nr=1.0, and ~ = 1 . 0  

? 1.05 1.15 1.2 2.0 5.0 10.0 

NUh 3.608 3.308 3.21 0 2.826 2.852 2.892 

Q* 0.837 0.916 0.941 1.038 1 . 0 2 1  1.006 

Table 4 Effect of wall emissivity ew on 
average Nusselt number and total 
dimensionless heat transfer; Ra* =106, 
Pr=0.71, AR--1.0, H/L =1.0, ~=0.36, ~* =0.005, 
k* =10.0, Nr=1.0, 7=1.2 

c w 0.0 0.25 0.5 0.75 1.00 

NUh 3 . 8 0 1  3.688 3.523 3.358 3.210 

Q* 0.773 0.834 0.879 0.915 0.941 
(0.815) (0.848) (0.886) (0.926) (0.971) 

black wall (e, = 1.0). Radiation heat transfer accounts for 
about 20% of the total heat transfer when the wall is black 
(e,-- 1.0). 

Table 3 shows the effect of radiation on the total 
heat transfer for various modified Rayleigh numbers and 
compares the results for a model without radiation (given 
in parentheses). The dimensionless heat transfer rate 
calculated as a function of the wall emissivity e,, radiation 
number Nr, and imposed temperature ratio is shown in 
Tables 4, 5 and 6, respectively. The total heat transfer rates 
predicted by the one-dimensional model are shown in 
parentheses in Tables 4 and 5. The total heat transfer rate 
through the structure depends strongly on the wall 
emissivity, radiation number, and the imposed tempera- 
ture ratio rather than the average Nusselt number. The 
Nusselt number is thus seen to be one of many parameters 
that controls the heat transfer rate in conjugate heat 
transfer problems. 

Conclusions 

Based on the numerical results obtained, the following 
conclusions can be drawn: 

1. In an unstable arrangement such as heating 
from the side, heat conduction in the walls and radiation 
exchange among walls reduce the driving force for natural 

convection as well as producing thermal stratification in 
some regions of the cavity. 

2. The Nusselt number is only one of many 
parameters that control heat transfer in conjugate pro- 
blems. The total heat transfer rate depends not only on the 
natural convection in the cavity but also on the wall 
conductances and the radiation parameters. 

3. The Nusselt number at the heated vertical wall 
increases with a decrease in the wall emissivity e,, 
radiation number N,, and imposed temperature ratio 
and increases with the modified Rayleigh number Ra*, 
and the Prandtl number Pr. 

4. Total heat transfer through the system depends 
not only on the Nusselt number in the cavity, as 
influenced by the Rayleigh number, but also on the 
thermophysical properties of the wall material and the 
fluid, and the parameters governing radiation exchange 
among the cavity walls. 

5. The one-dimensional model for heat transfer 
across the cellular enclosure which ignores the interaction 
between wall heat conduction and natural convection in 
the cavity yields a reasonable prediction (within _ 20%) of 
the total heat transfer in comparison with the detailed 
two-dimensional model. 
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